

Analytical Method/ Detector	Carrier and Support Gases	Type of Analysis Impurity Considerations
Gas Chromatography		
TCD	N ₂	Universal Detector
Thermal Conductivity Detector)	Не	Atmospheric contaminants can oxidize the
	H ₂	detector filament giving rise to negative peaks and reduced sensitivity.
	Ar	
ID Flame Ionization Detector)	He	Organic Compounds Hydrocarbons in carrier and fuel gases can give rise
Carriers	N ₂	to baseline noise and reduced detector sensitivity. Oxygen and water cause column deterioration and affect retention time on critical separations.
	Ar	
Combustion Gases	H ₂	
	40% H ₂ in He	
	40% H 2 in N2	
	Air	
CD Electron Capture Detector)	He	Halogenated Compounds Detector response and column life are reduced by
	N ₂	oxygen and water. Hydrocarbons and halocarbons can produce baseline noise, negative peaks and plumbing contamination.
	5% CH ₄ in Ar-ECD (P-5)	pumbing contamination.
	10% CH ₄ in Ar-ECD (P-10)	
HD	Не	Universal Detector
(Helium lonization Detector)	He Purge	Atmospheric impurities can cause baseline noise signal polarity and reduced detector stability and sensitivity.
PD	He	Sulfur or Phosphorous Compounds
lame Photometric Detector)	N ₂	Organics can yield baseline noise and carbon
	H ₂	dioxide can suppress detector response.
	Air	
PID (Photo Ionization Detector)	He	Selective Detector Dependent on UV Source
	N ₂	Organics can yield baseline noise and carbon dioxide can suppress detector response.
GC/MS	He	All Compounds
Mass Spectrometer)	N ₂	Organics can yield baseline noise and carbon
	Ar	dioxide can suppress detector response.
DID (Discharge lonization Detector)	He	Universal Detector
	He Purge	Atmospheric impurities can cause baseline noise signal polarity and reduced detector stability and sensitivity.
USD (Ultrasonic Detector)	Ar	Universal Detector Atmospheric impurities can cause baseline
	He	noise signal polarity and reduced detector stability and sensitivity.

Analytical Method/ Detector	Carrier and Support Gases	Type of Analysis Impurity Considerations
Optical Spectometry – Adsorption		
NDR(Non-dispersive Infrared)	Air	Polyatomic and Heteroatomic Compounds
	N ₂	
IR (Dispersive Infrared)		Polyatomic and Heteroatomic Compounds
-FTIR	Ar	During matrix isolation, oxygen can oxidize a sample. Moisture interfers with IR spectra.
(Fourier Transform Infrared)		Impurities coinciding with guantified peaks
-FG/GFC	N ₂	can cause inaccuracies.
(Correlation)		
AA (Atomic Absorption)	C_2H_2	Elemental Analysis
Combustion Gases	n-C ₄ H ₁₀	Impurites can cause the flame to discolor or burn unevenly. Furnace atmospheres require
	H ₂	low oxygen and moisture levels to maintain
	N ₂ O	instrument sensitivity.
	Air	
	Ar (Flameless)	
	N ₂	
NMR (Nuclear Magnetic Resonance)	LHe	Analysis of Molecular Structure
	LN ₂	

Legend

- AA- Atomic Absorption
- UH- Ultra High Purity
- RS Research/Chromatographic
- Z Zero
- UZ Ultra Zero
- IS Instrument
- OF Oxygen Free
- TG Trace Analytical
- EC Electron Capture Detector

Analytical Method/ Detector	Carrier and Support Gases	Type of Analysis Impurity Considerations
Optical Spectrometry – Emission		
Atomic Emission		Elemental Analysis
- ICP (Inductive Coupled	Ar	
Plasma)	LAr	
	N ₂	
	H ₂	
Arc or Spark Emission	Ar	Elemental Analysis
	H ₂	
	5% Ar in H $_{ m 2}$	
Chemiluminescence	Air	NO-NO ₂ -NOX Hydrides and O ₃
	N ₂	
	0 ₂	
Fluorescence UV	Air	SO ₂ -H ₂ S-Organic Compounds
	N ₂	
XRF (Fluorescence X)	10% CH ₄ in Ar	Elemental Analysis
	1.3% n-C ₄H ₁₀ in He	
	0.95% i-C ₄H ₁₀ in He	
	LN ₂	
Mass Spectrometry		
MS (Under Vacuum)		All Compounds
·	N ₂	
	He	

Legend

- UH Ultra High Purity
- RS Research
- IC Inductive Coupled Plasma
- CE Continuous Emissions Monitoring (See Pure Gas Section for correct definition)
- TG Trace Analytical
- Z Zero
- VC Volatile Organic Compound Free
- UZ Ultra Zero

Analytical Method/ Detector	Carrier and Support Gases	Type of Analysis Impurity Considerations
Others		
Nuclear Counter	10% CH ₄ in Ar	Measurement of Radioactivity
	1.3% n-C ₄ H ₁₀ in He	
	0.95% i-C ₄ H ₁₀ in He	
Hydrometer	Air	Moisture in All Gas
	N ₂	
Paramagnetic Analyzer	N ₂	Oxygen in All Gas
	O ₂ in N ₂	
Carbon and Sulfur in Steel	Ar	Analysis of Carbon, Sulfur and Gases
	He	$(N_2-H_2-O_2)$ in Steel
	N ₂	
	0 ₂	

Instrumentation Mixture Summary

Product Description	Mixture Application
40% H $_2$ in He (FID Fuel) (THC < 0.5 ppm)	Fuel Gas for GC-FID
40% H $_2$ in He UHP (FID Fuel) (THC < 0.1 ppm)	Fuel Gas for GC-FID
40% H $_2$ in N $_2$ (FID Fuel) (THC < 0.5 ppm)	Fuel Gas for GC-FID
40% H $_2$ in N $_2$ UH (FID Fuel) (THC < 0.1 ppm)	Fuel Gas for GC-FID
5% CH ₄ in Argon-ECD (P-5)	Make-up Gas for GC-ECD
10% CH 4 in Argon-ECD (P-10)	Make-up Gas for GC-ECD
10% CH ₄ in Ar (P-10)	XRF (Fluorescence X)
1.3% n-C ₄H ₁₀ in He	XRF (Fluorescence X)
0.95% i-C ₄ H ₁₀ in He	XRF (Fluorescence X)
5% CH ₄ in Ar (P-5)	Carrier Gas for Proportional Counters
10% CH ₄ in Ar (P-10)	Carrier Gas for Proportional Counters
1.3% n-C ₄H ₁₀ in He	Quench Gas
0.95% i-C ₄ H ₁₀ in He	Carrier Gas for Geiger-Muller
5% Ar in H ₂	Spark Emission